Example #1	Solve $5 + x = 12$.	*Side-by-Side Comparison *Multiple Methods *Choral Response *Syntax
$\frac{\text{Decomposition:}}{5+x=12}$	♦ Choral Response ♦ "Five plus a number is 12."	
5 + x = 5 + 7	"What are we solving for?" [x] "How can we get a five on both sides of the equation?" [Dec	compose 12, 5+7]
	"Now can we take a positive 5 from both sides?" [Yes] "What is the value of x ?" [7]	
-	$\Box = 1, \qquad \blacksquare = -1, \qquad \Box = x$	
5 + x = 12		
	♦ Choral Response •• Five plus a number is 12."	
	"What are we solving for?" [x]	
	"Can I take positive 5 from both sides of the equation"	?" [Yes]
	"What is the value of x ?" [7]	
$\therefore x = 7$		
Bar Model:		
5 + x = 12	Choral Response "Five plus a number is 12."	

5	x
12	2

З

б

х

+ 7

"What are we solving for?" [x] "How can we decompose 12?" [5+7]

"Can I take positive 5 from both sides?" [yes]

"What is the value of *x*?" [7]

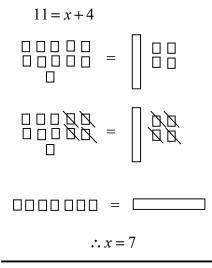
x
7

 $\therefore x = 7$

Inverse	Operation:

Choral Response "Five plus a number is 12."

5 + x = 12	"What are we solving for?" [x]
5-5+x=12-5	"What is the inverse operation of addition?" [Subtraction]
0 + x = 7	"SPOE tells us to subtract what value from both sides of the equation?" [5]
<i>x</i> = 7	"What is the sum of x and zero?" [x] "What is the value of x?" [7]


You Try #1

Solve 11 = x + 4

Decomposition:

11 = x + 4 4 + 7 = x + 4 4 + 7 = x + 47 = x

Algebra Tiles:

Bar Model:

11 = x + 4

x	4
11	1

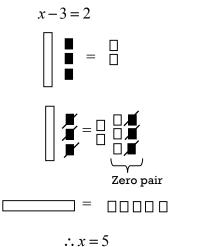
x	Ă
7 -	- 4

x
7

 $\therefore x = 7$

Inverse Operation:

11 = x + 411 - 4 = x + 4 - 47 = x + 07 = x


Example #2

Solve x - 3 = 2.

$\frac{\text{Decomposition:}}{x-3=2}$	Choral Response "A number minus 3 equals 2."	*Multiple Methods *Choral Response *Syntax
x + (-3) = 2	"What are we solving for?" [x]	
x + (-3) = 2 + 3 - 3	"How can we get x isolated?" [Remove -3 from both side equation]	ides of the
$x + (\cancel{-3}) = 2 + 3 \cancel{-3}$ $x = 2 + 3$	"Do we have a -3 on both sides of the equation?" [No] "How can I get -3 on the right side of the equation?" [A "Now what value can be removed from both sides of the	1 2
x = 5	[-3] "What is the value of x?" [5]	

Choral Response "A number minus 3 equals 2."

Algebra Tiles:

"What are we solving for?" [x]
"Can we take -3 from both sides of the equation?" [No]
"How can we get -3 on the right side of the equation?" [Add zero pair]
"What value can be removed from both sides of the equation?" [-3]

"What is the value of x?" [5]


Bar Model:

x - 3 = 2	
x	-3
	2

x	-3
2	+3 - 3
	Zero pair

x	-33
2 -	+ 3 -3

x	-33
2	+ 3

$$\therefore x = 5$$

Choral Response "A number minus 3 equals 2."

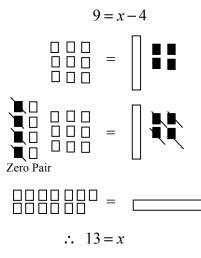
"What are we solving for?" [x]

"In order to remove -3 what must we add?" [zero pair]

"What value can be removed from both sides?" [-3]

"What is the value of x?" [5]

<u>Inverse</u> Operation:	Choral Response Anumber minus 3 equals 2."
x - 3 = 2	"What are we solving for?" [x]
x - 3 + 3 = 2 + 3	"What is on the same side of the equation as x ?" [-3]
x + 0 = 5	"APOE tells us to add what value to each side of the equation?" [3]
x = 5	"What is the value of x ?" [5]


*Side-by-Side Comparison

You Try #2 Solve 9 = x - 4

Decomposition: 9 = x - 4 $9 \pm 4 - 4 = x - 4$

$$9+4-4 = x -4$$
$$9+4 = x$$
$$13 = x$$

Algebra Tiles:

Bar Model:		
9 = .	x-4	
x	-4	
	9	
x	<u>\</u>	
9 +	4 -4	
	Zero pair	
x	-4	
9	+ 4	
	x	
	12	

 $\frac{13}{\therefore 13 = x}$

L

Inverse Operation:

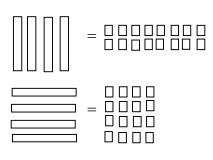
9 = x - 4 9 + 4 = x - 4 + 4 13 = x + 013 = x

Example #3 Solve $3x = 12$ Decomposition: $3x = 12$ $3 \cdot x = 3 \cdot 4$ $3x = 12$ $3 \cdot x = 3 \cdot 4$ $x + x + x = 12$ $\cancel{5} \cdot x = \cancel{5} \cdot 4$ $x + x + x = 4 + 4 + 4$ $x = 4$ $x = 4$	 Choral Response "Choral Response "Three times a number is 12." "What are we solving for?" [x] "What two factors of 12 could be used to decompose 12?" [3•4] "What factor can be removed from both sides of the equation?" [3] "What is the value of x?" [4]
$ \begin{array}{ c c } \hline \hline$	Response "Three times a number is 12." we solving for?" $[x]$ ny constants will each of the three x 's receive?" [4] he value of $1x$?" [4]
x x x "What are we12"Using repeating repeating the second sec	sponse
$\frac{\cancel{3}x}{\cancel{3}} = \frac{12}{3}$ "What a "What is "DPOE "Eactor x = 4 "What is "What	al Response \circ "Three times a number is 12." are we solving for?" [x] is the inverse operation of multiplication?" [Division] tells us to divide both sides of the equation by?" [3] 12 to create an equivalent form of one" [3•4] is the value of 1x?" [4]
3x = 12	al Response O "Three times a number is 12."

 $\frac{1}{3}\left(\frac{3x}{1}\right) = \frac{1}{3}\left(\frac{12}{1}\right)$ $\frac{\cancel{3}x}{\cancel{3}} = \frac{12}{3}$ $1x = \frac{\cancel{3} \cdot 4}{\cancel{3}}$

"What are we solving for?" [x] "What is the Multiplicative Inverse/Reciprocal of 3?" $\left[\frac{1}{3}\right]$

"What is the product of $\frac{1}{3} \cdot \frac{3}{1}$?" [1]


"Factor 12 to create and equivalent form of one" [3•4]

"What is the value of 1x?" [4]

You Try #3	Solve $4x = 16$.	
Decomposition $4x = 16$	4x = 16	*Side-by-Side Comparison *Multiple Methods *You Try *Syntax
4x = 10	x + x + x + x = 4 + 4 + 4 + 4	
x = 4	x = 4	

Algebra Tiles:

4x = 16

 $\therefore x = 4$

$\frac{\text{Bar Model:}}{4x = 16}$			
x	x	x	x
	16		
x	x	x	x
4	4	4	4
x			
4			
$\therefore x = 4$			

 $\frac{\textbf{Inverse Operation:}}{4x = 16}$

4x = 16 $\frac{4x}{4} = \frac{16}{4}$ $1x = \frac{4 \cdot 4}{4}$ x = 4

Multiplicative Inverse:

$$4x = 16$$

$$\frac{1}{4} \left(\frac{4x}{1}\right) = \frac{1}{4} \left(\frac{16}{1}\right)$$

$$\frac{4x}{4} = \frac{16}{4}$$

$$1x = \frac{4 \cdot 4}{4}$$

$$x = 4$$

Example #4	Solve $\frac{x}{4} = 5$.
------------	---------------------------

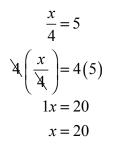
Decomposition:

$\frac{x}{4} = 5$ or $\frac{1}{4}x = 5$	• (Two ways to write the equation)
$\frac{1}{4}x = 5$	Choral Response "A number divided by 4 equals 5."
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	"What are we solving for?" [x]
$\frac{1}{4}x + \frac{1}{4}x + \frac{1}{4}x + \frac{1}{4}x = 5 + 5 + 5 + 5$	"How many $\frac{1}{4}$'s are in one whole?" [4]
$\frac{\underline{4}}{\underline{4}}x = 20$	"So if there are 4 - $\frac{1}{4}$'s, how many 5's do we need?" [4]
1x = 20	
x = 20	"What is the value of $1x$?" [20]

Algebra Tiles:

$\frac{x}{4} = 5$	Choral Response "A number divided by 4 equals 5."
	"What are we solving for?" [x]
	"What do we know about <i>x</i> ?" $\left[\frac{1}{4} \text{ of } x \text{ equals 5}\right]$
	"What does $\frac{2}{4}$ of x equal?" [10]
	"What does $\frac{3}{4}$ of x equal?" [15]
	"What does $\frac{4}{2}$ or all of r equal?" [20]
	"What does $\frac{4}{4}$ or all of x equal?" [20]
$\therefore x = 20$	

Bar Model:


$\frac{x}{4} =$	5 		
$\frac{1}{4}x$	$\frac{1}{4}x$	$\frac{1}{4}x$	$\frac{1}{4}x$
$\frac{\frac{1}{4}x}{5}$	$\frac{\frac{1}{4}x}{5}$	$\frac{\frac{1}{4}x}{5}$	$\frac{\frac{1}{4}x}{5}$
5	5	5	5

 $\therefore x = 20$

"What are we solving for?" [x]"Divide x into fourths." $\left[\frac{1}{4}x + \frac{1}{4}x + \frac{1}{4}x + \frac{1}{4}x\right]$ "What is the value of $\frac{1}{4}$ of x?" [5] "What is the value of $\frac{2}{4}$ of x?" [10] "What is the value of $\frac{3}{4}$ of x?" [15] "What is the value of $\frac{4}{4}$ or all of x?" [20]

Inverse Operation:

Choral Response "A number divided by 4 equals 5."

"What are we solving for?" [x]

"What is the inverse operation of division?" [Multiplication]

"MPOE tells us to multiply both sides of the equation by?" [4]

"What is the value of 1x?" [20]

*****Multiplicative Inverse:

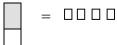
$\frac{1}{4}x = 5$
$\frac{4}{1}\left(\frac{1}{4}x\right) = \frac{4}{1}(5)$
$\frac{\cancel{A}x}{\cancel{A}} = \frac{20}{1}$
1x = 20
x = 20

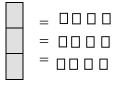
Choral Response Anumber divided by 4 equals 5." "What are we solving for?" [x]"What is the Multiplicative Inverse/Reciprocal of $\frac{1}{4}$?" $[\frac{4}{1}]$ "What is the product of $\frac{1}{4} \cdot \frac{4}{1}$?" [1] "What is the value of 1x?" [20]

Decomposition:

$$\frac{1}{3}x = 4$$

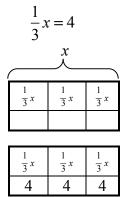
$$\frac{1}{3}x + \frac{1}{3}x + \frac{1}{3}x = 4 + 4 + 4$$


$$\frac{3}{3}x = 12$$


$$1x = 12$$

$$x = 12$$

<u>Algebra Tiles:</u>


 $\frac{1}{3}x = 4$

Bar Model:

x	
12	

 $\therefore x = 12$

Inverse Operation:

$$\frac{x}{3} = 4$$

$$\Im\left(\frac{x}{\Im}\right) = 3(4)$$

$$1x = 12$$

$$x = 12$$

Multiplicative Inverse:

$$\frac{1}{3}x = 4$$

$$\frac{3}{1}\left(\frac{1}{3}x\right) = \frac{3}{1}(4)$$

$$\frac{3}{3}x = \frac{12}{1}$$

$$1x = 12$$

$$x = 12$$

Example #5:

$$41x = 328$$

$$41 \bullet x = 2 \bullet 2 \bullet 2 \bullet 41$$

$$41 \bullet x = 2 \bullet 2 \bullet 2 \bullet 41$$

$$x = 2 \bullet 2 \bullet 2 \bullet 41$$

$$x = 2 \bullet 2 \bullet 2$$

$$x = 8$$

$$328 = 300 + 20 + 8$$

$$2 \cdot 164 \quad 150 + 10 + 4$$

$$2 \cdot 82 \quad 75 + 5 + 2$$

$$2 \cdot 41 \quad 40 + 1$$

 $\therefore 328 = 2 \bullet 2 \bullet 2 \bullet 41$

*Side-by-Side Comparison *Multiple Methods *Choral Response *Syntax

33x = 264
$3 \bullet 11 \bullet x = 2 \bullet 2 \bullet 2 \bullet 3 \bullet 11$
$3 \cdot N \cdot x = 2 \cdot 2 \cdot 2 \cdot 3 \cdot N$

 $x = 2 \bullet 2 \bullet 2$

x = 8

<u>You Try #5:</u>

$$264 = 200 + 60 + 4$$

$$2 \cdot 132 \quad 100 + 30 + 2$$

$$2 \cdot 66 \quad 50 + 15 + 1$$

$$2 \cdot 33$$

$$3 \cdot 11$$

$$\therefore 264 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 11$$